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Introduction

The human brain is an information processing device. Information enters through the senses and the
brain’s output is behavior, mainly in the form of signals to muscles. Computation in a human brain
is associated with the activity of a very large number neurons, estimated as 85× 109 in (Herculano-
Houzel, 2009).

The neural network in your brain is formed by connecting the neurons to 10, 000 − 100, 000
other neurons in complex patterns - forming the unfathomable structure in your head, that currently
decodes this text and controls your behavior. Both of basic interest and because we need to understand
diseases caused by malfunctioning, we measure and model information processing in the human brain.

Figure 1: A schematic of the neuron: The ‘computational unit in the brain’ (Blausen Medical Communications).
We model the neuron as a simple on-off computer. The neuron accepts input from other neurons and the senses
through the dendritic tree. Based on the received input the neuron decides whether to be active or not. When
becoming active the neuron communicates the change by signaling through the axon to downstream neurons
before returning to the in-active state.

In this exercise we will analyse a simplified mathematical neuron model, for references see e.g.,
McCulloch and Pitts (1943); Widrow and Hoff (1960); Rosenblatt (1961). In our model the neuron is
assumed to be in one of two states: active or in-active. Active neurons signal their state to receiving
neurons downstream in the network. For a given neuron, the decision to become active is based
on signals received from its input neurons through the dendritic tree, see figure 1. The effect of
an incoming signal can be excitatory - contributing towards becoming active - or inhibitory, hence

1



suppressing activity. The positive/negative modulation of the received input is thought to be learned
from data and is implemented in the synaptic connection between an axon of the sending neuron and
the dendritic tree of a receiving neuron.

In the mathematical model, the neuron computes a weighted sum of its D input

a = w1 · x1 + w2 · x2 + ...+ wD · xD, (1)

The weights represent the effect of the synaptic connections and are positive (excitatory) or negative
(inhibitory). The neuron’s decision to become active is based on the value of a compared to a threshold
t0: The neuron is active if a ≥ t0 and in-active if a < t0.

A two input vector model

To develop intuition on the decisions made by a neuron, let us first study a neuron with only two
inputs x1 and x2,

a(x) = w1 · x1 + w2 · x2 = w · x. (2)

Here we used that the computation of a(x) can be understood as the ‘dot product’ between the two
vectors w = (w1, w2) and x = (x1, x2). To characterize the decision process we consider the decision
boundary, formed by vectors x that solve a(x) = t0 or

w · x = t0. (3)

Assuming w2 6= 0 we can solve the equation for x2 to get

x2 = −
w1

w2
x1 +

t0
w2
. (4)

Hence the decision boundary formed by all the x vectors for which a(x) = t0, takes the form of a
straight line with slope α = −w1

w2
and intercept β = t0

w2
. See Figure 2.

Exercise 1 Derive Equation (4) starting from Equation (3)

We can make a geometric interpretation of the dot product. Without loss of generality we will
assume |w| = 1 or

√
w2
1 + w2

2 = 1. Rewrite the vectors as

w = (cos vw, sin vw)

x = |x| (cos vx, sin vx)
(5)

where vw and vx are angles between the respective vector and the first axis. We then get

a(x) = w · x = |x| (cos vw cos vx + sin vw sin vx) = |x| cos(vw − vx). (6)

Since, vw − vx is the angle between the two vectors, we see that a(x) is the projection of vector x on
unit vector w. See also Figure 2.

Exercise 2 Use Equation (6) to prove that w is the normal vector for the line where a(x) = t0. Hint:
Show that the vector x′ − x is orthogonal to w.
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Figure 2: The x vectors solving a(x) = t0 form a line with slope α = −w1
w2

and intercept with the second axis
β = t0

w2
.

Figure 3: The line of xs solving a(x) = t0 separates the two regions of inputs that lead to active and in-active
neuron states.

The analysis shows that within our mathematical model the neuron serves as a basic pattern
detector: The neuron becomes active for certain combinations of inputs that lead to a(x) ≥ t0. Here,
vectors of the input neurons’ activity - the x vector - that are located on the positive side of the line,
with respect to the normal vector w.

Neurons in three dimensions and beyond

If we next consider a three dimensional case with inputs x = (x1, x2, x3) and weights w = (w1, w2, w3)
we note that the two vectors x,w of course can be viewed as vectors in a two dimensional plane within
three dimensional space of possible inputs. Thus, the two-dimensional argument above can be now
be carried out without changes, and a(x) can be interpreted as the projection of x on unit vector w.
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What about the decision? Now a(x) = t0 is solved by a two-dimensional set of x vectors in the
three dimensional space. To see this, assume that w3 6= 0. A simple generalization of our previous
calculation shows

a(x) = w · x = t0 ⇒ x3 = −
w1

w3
x1 −

w2

w3
x2 +

t0
w3
. (7)

The latter is the equation of a plane in 3D with the two slopes α1 = −w1
w3

and α2 = −w2
w3

and
intercepting the third axis at β = t0

w3
. Exercising a bit of faith we see this in fact holds for all

Figure 4: The decision surface of a neuron with three inputs.

Figure 5: More complex decision regions can be formed by combining neurons.

dimensions, including the case of the human brain where the number of input neurons is 10, 000 −
100, 000.

Exercise 4 Generalize the previous argument and show that the vector w is a normal vector to the
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two-dimensional plane of solutions to a(x) = t0 for a three dimensional x.

More complex decisions can be implemented by neural networks

By combining neurons we can encode more complex decisions. Say we aim to detect input neuron
states located in a triangular region in two dimensional input space. This can be implemented by com-
bining three neurons as shown in Figure 5. Decisions are made by a fourth neuron accepting the activ-
ity of the three shown in Figure 5, as input, and having three weights woutput = (1/

√
3, 1/
√
3, 1/
√
3)

and a threshold t0,output =
√
3.

Exercise 5 Verify the above statement regarding weights and threshold of the ‘output neuron’.
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